Genomic biomarkers of prenatal intrauterine inflammation in umbilical cord tissue predict later life neurological outcomes

نویسندگان

  • Sloane K Tilley
  • Robert M Joseph
  • Karl C K Kuban
  • Olaf U Dammann
  • T Michael O'Shea
  • Rebecca C Fry
چکیده

BACKGROUND Preterm birth is a major risk factor for neurodevelopmental delays and disorders. This study aimed to identify genomic biomarkers of intrauterine inflammation in umbilical cord tissue in preterm neonates that predict cognitive impairment at 10 years of age. STUDY DESIGN Genome-wide messenger RNA (mRNA) levels from umbilical cord tissue were obtained from 43 neonates born before 28 weeks of gestation. Genes that were differentially expressed across four indicators of intrauterine inflammation were identified and their functions examined. Exact logistic regression was used to test whether expression levels in umbilical cord tissue predicted neurocognitive function at 10 years of age. RESULTS Placental indicators of inflammation were associated with changes in the mRNA expression of 445 genes in umbilical cord tissue. Transcripts with decreased expression showed significant enrichment for biological signaling processes related to neuronal development and growth. The altered expression of six genes was found to predict neurocognitive impairment when children were 10 years old These genes include two that encode for proteins involved in neuronal development. CONCLUSION Prenatal intrauterine inflammation is associated with altered gene expression in umbilical cord tissue. A set of six of the differentially expressed genes predict cognitive impairment later in life, suggesting that the fetal environment is associated with significant adverse effects on neurodevelopment that persist into later childhood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes

Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...

متن کامل

Association of cord blood chemokines and other biomarkers with neonatal complications following intrauterine inflammation

BACKGROUND Intrauterine inflammation has been associated with preterm birth and neonatal complications. Few reports have comprehensively investigated multiple cytokine profiles in cord blood and precisely identified surrogate markers for intrauterine inflammation. AIM To identify the cytokines and surrogate markers associated with intrauterine inflammation and subsequent neonatal complication...

متن کامل

Comparison of Maternal Serum and Umbilical Cord Blood Leptin Level in IUGR Neonates

Background: Gestational weight gain is an impressive factor in the fetal outcome. Intrauterine growth restriction (IUGR) is one of the most important problems during fetal period that may lead to many perinatal and long-term complications and growing neonatal morbidities and mortalities. The aim of the study was to ascertain the relationship between umbilical cord blood leptin concentration and...

متن کامل

Influence of Prenatal Lead Exposure on Genomic Methylation of Cord Blood DNA

BACKGROUND Fetal lead exposure is associated with adverse pregnancy outcomes and developmental and cognitive deficits; however, the mechanism(s) by which lead-induced toxicity occurs remains unknown. Epigenetic fetal programming via DNA methylation may provide a pathway by which environmental lead exposure can influence disease susceptibility. OBJECTIVE This study was designed to determine wh...

متن کامل

Cord Blood

  Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017